On the Christoffel-Darboux kernel for random Hermitian matrices with external source

نویسنده

  • Jinho Baik
چکیده

Bleher and Kuijlaars, and Daems and Kuijlaars showed that the correlation functions of the eigenvalues of a random matrix from unitary ensemble with external source can be expressed in terms of the ChristoffelDarboux kernel for multiple orthogonal polynomials. We obtain a representation of this Christoffel-Darboux kernel in terms of the usual orthogonal polynomials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariable Christoffel–Darboux Kernels and Characteristic Polynomials of Random Hermitian Matrices

We study multivariable Christoffel–Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, ...

متن کامل

X iv : m at h - ph / 0 30 70 55 v 1 2 8 Ju l 2 00 3 Random matrices with external source and multiple orthogonal polynomials

We show that the average characteristic polynomial P n (z) = E[det(zI−M)] of the random Hermitian matrix ensemble Z −1 n exp(−Tr(V (M) − AM))dM is characterized by multiple orthogonality conditions that depend on the eigenvalues of the external source A. For each eigenvalue a j of A, there is a weight and P n has n j orthogonality conditions with respect to this weight, if n j is the multiplici...

متن کامل

A Christoffel-Darboux formula for multiple orthogonal polynomials

Bleher and Kuijlaars recently showed that the eigenvalue correlations from matrix ensembles with external source can be expressed by means of a kernel built out of special multiple orthogonal polynomials. We derive a Christoffel-Darboux formula for this kernel for general multiple orthogonal polynomials. In addition, we show that the formula can be written in terms of the solution of the Rieman...

متن کامل

Janossy Densities I. Determinantal Ensembles. ∗

We derive an elementary formula for Janossy densities for determinantal point processes with a finite rank projection-type kernel. In particular, for β = 2 polynomial ensembles of random matrices we show that the Janossy densities on an interval I ⊂ R can be expressed in terms of the Christoffel-Darboux kernel for the orthogonal polynomials on the complement of I.

متن کامل

ar X iv : m at h - ph / 0 21 20 63 v 3 1 5 M ay 2 00 3 Janossy Densities

We derive an elementary formula for Janossy densities for determinantal point processes with a finite rank projection-type kernel. In particular, for β = 2 polynomial ensembles of random matrices we show that the Janossy densities on an interval I ⊂ R can be expressed in terms of the Christoffel-Darboux kernel for the orthogonal polynomials on the complement of I.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008